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1 Introduction

Scientific codes are usually parallelised by partitioning a grid among processors. Irregular grids (see figure 1)

must be partitioned carefully in order to balance the workload. Solution methods for time-varying prob-

lems often change the grid as the computation progresses; furthermore, the grid structure is not generally

manifest until load-time, when the code reads the problem from a file. These characteristics make paral-

lelization nontrivial. Our ability to map such problems well depends on our ability to analytically model the

computation's execution time and compare different candidate partitions.

This paper outlines a framework for treating these problems. We illustrate the method on a fiuid flow

computation which periodically redefines its grid, giving rise to a sequence of grid structures. The compu-

tation's execution time is modeled analytically as a function of grid placement, partition, and the compu-

tation's logical structure. Model constants are estimated by measuring the execution time of critical code

fragments. We use the model to construct partition schedules, and show that the model accurately predicts

performance-on large problems the model is within 3% of measured performance. The modeling approach

is not dependent on numerical particulars of the fluid's problem. Similar approaches on other codes should

produce good results as well.

2 Problem Particulars

We illustrate the method using a numerical solution of a wave equation:

au - (1

u(x, t) represents fluid density at position x and time t; equation (1) is an idealized law governing the change

in fluid density as a function of position and time. We numerically solve for u over 10, 1] by imposing a

three-tiered hierarchy of grids on [0, 1]. A grid at level i (i = 0,1, or 2) has points spaced uniformly Ah/2'

apart. As shown in figure 1,,a single grid at level 0 spans [0, 11; a multiplicity of grids may exist at levels 1

and 2, provided that grids at a shared level do not overlap, and each level 2 grid completely overlaps a level

1 grid. We will refer to a hierarchical collection of such grids as a grid structure, to be distinguished from

a single grid at sone level. The higher level grids help to resolve rapidly changing features in the solution.

These features tend to move as a function of time. Consequently, the size and position of the grids are

typically changed periodically as the equation is integrated in t. We will denote the resulting sequence of

grid structures by G1, .. , Gm. The computation begins by integrating over grid structure GI; some number

of time-steps later G, is replaced by G 2 , which in turn is later replaced by G 3 , and so on.

During a single time-step the solution procedure revolves around a routine, integrate(0. 1v1. t,

at). ]0 here is some contiguous grid at level lv1; equation (1) is integrated between t and t+At. The
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Abstract

Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top

performance it is necessary to partition the grid so as to balance workload and minimize communca-

tion/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the

course of the computation, and is not known until load-time. Critical mapping and remapping decisions

rest on our ability to accurately predict performance, given a description of a grid and its partition. This

paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code.

The models we construct are shown empirically to be accurate, and are used to find optimal remapping

schedules.
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Figure 1: Three-tiered grid hierarchy for one-dimensional problem. The grid is partitioned using a scatter

decomposition which assigns four subintervals to each of four processors.

synthesized treatment of all grid levels is carried out recursively by routine update, shown as figure 2. To

carry the solution ahead one time-step from t to t + At we call update with G being the entire level 0

grid. Each level 1 grid is integrated twice, each level 2 grid four times. The computational workload is

consequently intense in finely gridded regions.

integrate computes u(z, t + At) as a function of points close to z at time t. Consequently, parallelisa-

tion through domain partitioning requires inter-processor communication. If u(xi, t + At) is computed by

processor P and depends on a value u(xo, t) computed by P,, then P and Pj must communicate. In our

solution a partition is semi-static, meaning that for each time-step a processor carries out computations

in the same regions of the domain, until the partition is explicitly changed. This paradigm is used with

distributed memory architectures, and with shared memory architectures having a significant access cost

differential between a processor's local memory and the shared memory.' The grid structure is distributed

throughout the processor's local memories, with the shared memory being used only to exchange data lying

at partition boundaries.

IWhile most shared memory architectures fall into this class, the Flex/32 on which we performed our experiments don not.

This anomaly is due more to the delay in a local access than it is to fast global access.
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update(G. lvl, t. At) f
integrate(G, lvI, t. At);

if there are any level lvl+l grids above C

For all level lvl+I grids G0 above G (
update (, lvle1, t. (At)/2) ;

update( W.lvl+l,t+(At)/2, (At)/2);

}

)

Figure 2: Update function

The requirement that we partition at load-time and remap at run-time prohibits the use of computa-

tionally expensive partitioning algorithms. We consequently consider only two classes of partitions, binary

partitions[2], and scatter decompositionsl41. Binary partitioning explicitly balances workload by examining

the grid structure and estimating the workload. A first "cut" finds the domain point where the sum of

workload to the left equals (approximately) the sum of workload to the right. The resulting intervals are

themselves split using the same balancing rule; the algorithm proceeds recursively, creating 2" intervals with

approximately equal workload. Typically, one uses binary partitioning to create exactly as many intervals

as there are processors. By contrast, scatter decomposition divides the domain into a large of number small,

equi-length subintervals, and assigns an identical number of subintervals to each processor. Scatter decom-

position balances workload statistically, and is less sensitive to dynamic changes in the workload. A grid

structure can be partitioned using one of a variety of scatter decompositions which differ in the length of

the subintervals.

For any given grid structure we have a number of partitioning options. To optimize performance we must

be able to predict the computation's execution time, as a function of grid structure and partition. This ability

is zneded particularly when making remapping decisions in response to a change in the grid structure-the

tradeoffs between rernapping costs and benefits can only be made if performance is accurately predicted.

The section to follow outlines our approach to such modeling.

All of our experiments use the Flex/32 multiprocessor51 at the NASA Langley Research Center. The

Flex/32 has eighteen processors available for parallel processing, a 4Mb shared memory, 2Mb local memory,

and a small instruction cache for each processor.
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loop {

barrier;

CopylnBoundaryO;

update (G.0, t, At) ;

CollateSolutionO;

barrier;

CopyOutBoundaryO;

t - t At;

barrier;

Figure 3: High-level view of time-step loop

3 Analytic Model

The analytic model exploits the fact that scientific codes spend the bulk of their processing time in loops, and

that their synchronization patterns are regular. The model is loosely based on approaches outlined in (6,91.

Our approach is to identify the critical loops, and model each loop's execution time parametrically. Model

coefficients are estimated by measuring the loops' execution times. A processor's execution time (between

synchronizations) on a given grid structure, under a given partition can be estimated by calculating the

appropriate loop modiel parameters (e.g. number of loop iterations), and applying the performance model.

System time between two synchronization points is computed as the maximum processor time between those

points, plus a synchronization cost.

We now illustrate this approach by application to the fluids problem.

Figure 3 shows the sequence of routines called by a processor during one time-step. CopylnBoundaryO

copies from shared memory to local memory all the partition boundary data needed by the processor. The

vohlme of data ci,.,l iLs directly proportional to the number of subintervals assigned to that processor.

update we have se', before. It calls a multiprocessor version of integrate that is careful to integrate

only those points within the processor's purview. CollateSolutiono) readies the processor for another

time-step by copying (local to local) the 'new" solution (at time t + At) in the space reserved for the "old"

solution (at time t). CopyOutBoundaryO writes to shared memory all partition boundary data needed by

other processors. Calls to barrier synchronize the processors globally. The juxtaposition of barrier calls

at the top and bottom of this sequence allows a control process to perform a minor bit of necessarily serial
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book-keeping.

CopylnBoundary() and CopyOutBoundaryO) both loop through a processor's set of subintervals and

copy nine floating point numbers for each. Our expectation that loop execution time is proportional to the

number of subintervals is borne out with measurements. Flex/32 timers have a resolution of 20 msecs. Loop

execution times were estimated by first isolating the loop's code fragment in a separate, single-processor

calibration program. Within that program we measure the time required to execute a large number of loop

instances; our estimate (36 jp-secs per point) is taken by averaging. By measuring loop execution times we

accurately capture the compiler-dependent run-time overheads of array indexing and loop bounds checking.

CollateSolution O)'s execution time is found in the same fashion. The per-puint cost of a local to local

copy is estimated at 27.9 p-secs. Timings for barrier calls are found similarly, with the exception that all

processors execute the calibration program. A barrier synchronization involving sixteen processors requires

1.17 msecs.

integrate() numerically integrates a single contiguous grid within a subregion. It first sets up some

variables used within its loop, and then executes the loop. integrate()'s execution time is consequently

modeled as a linear function of the number of points being integrated. The slope and intercept of this

function were estimated with a least-squares fit over a wide range of measurements; the fit was found to

be tight. The loop startup cost (intercept) was determined to be 77 p-secs, and the per-point cost (slope)

was 153.9 g-secs. The integration method is a variant of the Lax methodl8l, and requires ten floating point

operations per point.

update O's execution time depends on the number and placement of grids within the processor's subdo-

mains. A grid that crosses a partition boundary is viewed by integrate ) as terminating at that boundary.

To estimate update ) 's execution time under a given partition we need only identify the numbers and lengths

of grids passed to integrate(), and use its timing model. This process must note the recursive nature of

update() calls, and weight integrateo) timings according to the number of times a grid is updated in a

single time-step.

Between the top and bottom barriers in figure 3 a control process may change the grid structure and

determine whether to remap. This serial cost is 1.4 msecs. The control process supports a decision to remap

by rebuilding a number of data structures. The amount of work is proportional to the number of subdomains

in the partition (remember that scatter decompositions have more subdomains than processors): 95 p-secs

per subdomain.2 A decision to remap is flagged in the shared memory, where the new partition is also

specified. Upon release from the top barrier a processor checks the remapping flag (a test not shown in the

figure). If a new mapping is specified, each processor executes the sequence below:

2Our implementation computes this partition at load-time, as will be described in the next section. If the new partition is

calculated dynamically, an additional cost should be added here.
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CopyOutOldSubintervals C);

CopylntlewPartitionO)

barrier;

CopyInllewSubintervals 0;

barrier;

The first copy routine simply dumps into shared memory all of the values it is responsible for under the old

partition. The second copy routine reads the processor's new partition, at a cost of 106 u-secs per assigned

subinterval. The third copy routine reads from shared memory the processor's new set of values. The first

and third copy routines require 30.1 -secs for each point copied.

The overall execution time is built up from individual processor timings. The system execution time

between two given barrier synchronizations is the maximum time taken by any processor between those bar-

riers, plus the barrier costs. Given the processor timing models and knowledge of synchronization behavior,

we are able to predict the time required by the system to perform a time-step. This quantity is multiplied

by the number of time-steps the defining grid structure and partition are used; additional costs are included

wherever a remapping is applied. The following section describes how we use the model to schedule problem

remappings, and to evaluate remapping heuristics.

4 Remapping Schedules

We now apply the analytic model to the problem of deciding when and how to remap. In an experimental

environment, one run of a production code often looks much like another, differing only by a small pertur-

bation of some parameter. It is sometimes reasonable then to assume that an entire run's sequence of grid

structures is known at load-time. Under these circumstances we can determine a schedule of partitions which

minimize the computation's execution time. Under other circumstances the sequence of grid structures is

created dynamically in response to the solution behavior. This precludes a priori scheduling of remappings,

forcing one to use re-napping heuristics. However, we can compare a posteriori the heuristic and optimal

performance by observing and recording the sequence of grid structures, and then constructing an optimal

a posteriori schedule of remappings.

Let GI, G2, ... , GAt denote the sequence of grid structures used in the course of solving a problem. Let

si denote the number of time-steps during which Gi is employed. GL can be partitioned by binary dissection

or by one of a number of scatter decompositions. If we use binary partioning on ,, and 02 is quite similar,

we may decide to rtain GI's partition for use on G. We may alternatively construct a binary partition

tailored to G 2 , or use a scatter decomposition. In general, we may partition Gj using a binary partition

tailored to Gi, we may use a binary partition tailored to some G,, i < j, or use some scatter decomposition.
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We let n, be the number of partitions we will consider for G,, and denote them by p(i, j) for i = 1.... , ni.

Finally, we let T(i, j) denote the time required to execute si time-steps using partition p(i, j) on G,, and let

Cj(j2 , j 2) be the cost of remapping from partition p(i, it) to partition p(i + 1, j2). Note that this cost is zero

if p(i, 31 ) is identical to p(i + 1, h). Also note that Ci(ji, h) depends on whether p(i + 1, 2) is computed at

run-time, or is computed off-line and merely implemented at run-time. When we compute schedules a priori

we may assume that the partition is computed off-line. When computing a posteriori schedules, Ci(i- 1, 32)

should include the cost of computing p(i + 1, j2) at run-time.

We use dynamic programming to determine a remapping schedule that minimizes the overall execution

time. The optimal cost function A(i,j) denotes the minimal remaining execution time, starting from GC

under partition p(i, j). The principle of optimality states that

(T(i, j) if i=M
A(i,j)= T(i,j) + min {Ci(j,k) +A(i+ lk)} if M (2)

1 1 < k < n,+,

It is straightforward to solve these equations by unraveling the recursion. The optimal schedule of partitions

(and hence remapping schedule) is found in the usual way by backtracking. The jI minimizing T(1, j) defines

the first partition (i.e. p(l, ji) is the first partition). T(1,ji) is the minimal execution time possible, given

the choice of partitions. The j2 minimizing min,{C (ji,j) + A(2, j)) defines 02's partition. If p(2, j2) is

different from p(l, jj) then we remap to p(2, h2) when the grid structure is changed to G2. In like fashion the

J3 minimizing min 2{C 2(j 2,j) 4 A(3,j)} defines G 3 's partition and the corresponding remapping decision,

and so on.

Let P,,, be the maximum number of partitions considered for use on any grid structure. The complexity

of computing the schedule is O(MP, ,), once the T(i, j) values are known. The complexity of estimating

T(i, j) is O(n. Size(G.)), where n is the number of processors.

Binary partition is a frequently cited technique for balancing irregular workload in a domain (e.g. [1,31).

Given its appealing properties, one is led to ask whether the partition scheduling approach outlined here is

of any use-why should we even consider scatter decompositions? Why not simply tailor a binary partition

for every grid structire? The answer is that scatter decompositions are bctter static paj titions for dynamic

workloads than are binary partitions. By using a binary partition one is forced to remap and suffer the

attendant costs. Figure 4 illustrates a scenario where the optimal static scatter decomposition clearly

outperforms any sort of dynamic remapping. Upon a large coarse grid (16384 points) we initially placed

a level 1 grid with 2048 points, and a level 2 grid with 1024 points near the left end of the domain. For

figure 4(a) this initial structure was then drifted to the right by six coarse-grid points, every 6 time-steps.

We plot the average time-step execution time of (i) the worst scatter decomposition policy (one subdomain

per processor), (ii) the policy of remapping using binary partitioning whenever a grid is changed, (iii) the

optimal binary partitioning policy, (iv) the policy of using the initial binary partition throughout the entire
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Figure 4: Comparison of binary partitioning and scatter decompositions.

computation, and (v) the optimal scatter decomposition policy (eight subdomains per processor). The same

plots are made in figure 4(b) for the case where the grid structures are drifted 24 coarse-grid points every 24

time- ,teps. It i.s i'iportant to note that these measurements include the cost of computing binary partitions

at run-time. The grids which suffer this cost are clearly identified by spikes in the performance curve. Clearly

the movement of grid structures forces frequent remapping, if we use binary partitioning. On the other hand,

the overhead of £t ii.Lpping drives up its cost b~cond that of a good scatter decomposition, but the worst

scatter decomposition is quite bad. The remapping scheduling algorithm is able to discern whether, when,

and w'hich scatter decomposition to use.

We incorporated the scheduling algorithm into the fluids code. At load time the preprocessor reads in

the full schedule of grid definitions, computes all T(a, j) and C,(;1 , j2), and solves the optimal cost equations

to produce a partition schedule which is passed to the fluids code. In general it is possible to reduce the

additional load-time delay by using the parallel processors themselves to compute the timing estimates and

solve the optiinality ,.quations. Alternatively, the schedule can be calculated on a (cheap) front-end processor

. ... 4 0 I



prior to loading i. code on an time-accounted super-computer, such as the current generation of Crays,

Cybers, or ETA-lOs.

5 Model Validation

We validated the performance model on a set of grid structures which approximate those used in practice.

On large problems we find the predicted values to be within 3% of measured performance; on small problems

the model is within 8,c of measured performance.

To test the model's robustness we generated grid structures which vary in size and density. Size is simply

the number of coarse grid points; density refers to the frequency with which higher level grids appear. A grid

structure having size N and density p is generated randomly, as follows. The coarse grid with N points is

immediately defined, any level 1 grid is dictated to have N/4 points, and any level 2 grid is dictated to have

N/16 points. Next we scan across the coarse grid, at each point performing a random trial which decides

whether to begin a level one grid there. The trial compares piN to a (0,1) uniform random number- a level

one grid is placed if the random number is smaller. In this case the scan point is advanced past the end of the

newly defined grid, and the random trials resume. Level two grids are randomly placed above existing level

one grids in entirely the same fashion, save that the probability threshold is increased to p/(N/4). The grid

structure so constructed is taken to be Gi. We specify that each grid structure be used for ten time-steps.

;. is constructed from G, by "drifting" every higher level grid ten coarse grid positions to the right. In

gerlI.LI, (, is coimtrmioed by driftiug ;, I eight coarse grid positions.

We compared predicted and measured execution times on problems indexed by size, and grid density.

Large problems use 16382 coarse grid points, small problems use 2048. Sparse problems are generated with

density factor p = .1. dense problems are created using p = 25. We randomly generated five different

intances of each problem type, and tested each under five, sixteen-processor partition schedules. The

Optimal partition schedule is obtained from the scheduling algorithm. On these test problems the optimal

schedule tended to remap frequently, using binary partitions (the optimal static scatter decomposition was

very close to this in performance). This is in stark constrast to the problem illustrated in figure 4; where

the cost of computing the binary partition was computed at run-time. This comparison serves to show that

ti.e major cost of rt-mappirng for this problem is not the data movement, but the partition calculation. The

other four partition:. labeled SD, are static scatter decompositions indexed by the number of subintervals

they assign to each processor. The table below gives the maximum, and average percentage (absolute)

deviation of the analytic model from measured performauce u,, all problem types, under the five selected

partitions. The greater accuracy seen on the large prob!ems is due to the fact that the large problems spend

proportionally more time in the loops we carefully moceled. The problems represented by this data span a

m m mram mmlmmm mlmmm , l~mmmmmmmmmm
•
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Large, Sparse Large, Dense Small, Sparse Small, Dense

Partition avg max avg max avg max avg max

Optimal 2.1 2.2 2.5 2.6 5.3 8.2 1.8 2.8

SI) 1 0.1 0.1 0.8 1.3 3.7 4.8 0.3 0.5

SD 8 1.6 2 1.7 1.8 5.8 6.8 2.7 3.4

SD 16 0.4 0.4 1.1 1.1 7.1 8.0 5.0 5.2

SD 32 0.7 0.7 0.5 0.6 7.5 8.0 6.7 7.3

Tdble 1: AL.solute (percentage) deviation of analytic model from measured performance.

wide spectrum of behaviors. The large problem running times are an order of magnitude larger than those

of the small problem-. For a single problem the worst partition's running time is usually at least twice as

large as the best partition's. Both computation bound and communication bound partitions are represented.

The data in table 1 gives us a high degree of confidence in the model, in its performance projections, and in

the conclusions we may draw from its use.

6 Summary and Conclusions

The highly structured nature of many scientific codes make them well-suited for deterministic performance

modeling. Most codes spend a large fraction of their time in a few loops-we can capture a parallel code's

overall performance by carefully modeling these .oops' behavior. This type of modeling is critically needed

to solve the problem of mapping a dynamic, irregular computation onto a parallel computer. We have

illustrated these points using a fluids code. We showed how the model can be used to optimally schedule

problem remapping . and showed that the model is accurate.

Models of the type we propose are ugeful in a number of ways. For example, adaptie gridding schemes

gente.rate new grid structures as a function of the solution behavior. A very real problem is the dynamic

(,:cision to remap or not in response to an unpredictable change in grid structure (see 17; for a treatment of

,.'V problem). Our ability to accurately model performance allows us to evaluate the costs and benefits of

rtamapping, at run-i ione. The analytic model can also be used in performance studies of remapping decision

policies. We can measure the performance under a policy in a run, then construct a posteriori an optimal

remapping schedule for that run. The optimal schedule gives a baseline against which the remapping decision

policy can be judged.

The method we used to model the fluids problem depends only on the fact that the code spends most of

its time in a few easily identified loops, that we can parametrically model those loops' performance, and that
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the code synchronizes in a regular fashion. A large number of scientific codes have these same characteristics,

and are therefore promising candidates for modeling.
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